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Short-time dynamics of correlated many-particle systems: Molecular dynamics
versus quantum kinetics
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Ultrafast relaxation and correlation buildup in Haparticle system can be described theoretically using two
completely different methods: mechanical equations of mofinalecular dynamigsand quantum-statistical
models (Kadanoff-Baym equations We propose to perform detailed quantitative comparisons of the two
methods to obtain a powerful and unbiased tool for testing different approximations. Results of such compari-
son are presented for a weakly coupled electron gas, which show remarkable agreement.
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Ultrafast relaxation phenomena, which are related to thavith finite degeneracy parameter=nAS3/(2s+1)=1
buildup of correlations, are currently of great interest in a(where n is the density,s the spin projection, and
variety of fields, ranging from plasmas to semiconductorsA =h/\27mkgT the thermal de Broglie wavelengththe
and nuclear matter; see, e.fl]. This has been stimulated mechanical treatment has to be based on Khparticle
mainly by the development of femtosecond lasers, which alSchralinger equatior(nonrelativistic case which becomes
low one both to excite the nonequilibrium particle ensemblevery complicated if the particle number is growing. There-
and to probe it with high accuracy. At the same time, thisfore, other concepts of quantum molecular dynamics have
created the need for precise theoretical modeling of thesgeen proposedsee, e.g.[7]), which are based upon an ap-
phenomena. proximate calculation of the wave function and already

The conventional description of relaxation processes i:ichieved remarkable resultsome recent results are pre-
based upon irreversible kinetic equations of the Boltzmanmsented in1]). Yet these methods are only emerging and we
type. However, these equations are not suitable for the situyill not discuss them here.
ations that are of interest here because they are valid only for Due to the mentioned limitations of kinetic theory and
times longer than the correlation timg,,, they do not in-  classical molecular dynami¢MD), comparisons of their re-
clude initial correlations, and they conserve only kinetic en-sults are of great interest. Such comparisons have been per-
ergy instead of total energh2,3]. Thus, for the theoretical formed previously, but only for thermodynamic or kinetic
description of ultrafast relaxation phenomena, generalizeg@roperties. It is now well established thaeversibleé me-
kinetic equations are necessary. Such equations have beehanical dynamics is able to reprodug@eeversible relax-
extensively studied in recent years, with the help of nonequiation results of kinetic theory on sufficiently long time
librium Green'’s functiongsee, e.g.[4,5]) and density opera- scales. However, no comparisons have been made of the
tor techniques(e.g.[2,3], and references thergirHowever,  short-time behaviortg<t< r,,) of correlated systems. This
due to the complex form of these equations, so far only thés not trivial, since one first has to clarify what kind of ki-
Born approximation, i.e., the limit of small coupling param- netic theory is equivalent to the MD approach in this regime.
etersI'<1, wherel' is the ratio of the potential and the It is the purpose of our paper to answer this question. We
kinetic energy in the system, is feasible for systematic nucompare the underlying concepts of both approaches and
merical studies. show that only kinetic equations that are defined as an initial-

On the other hand, the time evolution of a systemNof value problem may be equivalent to MD. The best candidate
interacting particles is completely determined by the fundafor this task is found to be the quantum kinetic equations of
mental equations of classical or quantum mechanis: Kadanoff and Bayni8], which, however, have to be gener-
coupled Newton’s equations or, in the quantum case, thalized to allow for arbitrary initial correlations. Finally, we
N-particle Schrdinger equation, supplemented with initial present a numerical comparison between MD and Kadanoff-
conditions for the particle coordinates and momentaBaym calculations for the case of a weakly coupled and
ri(to),pi(to), or the wave function?;  \(to), respectively. weakly degenerate electron gas, which show remarkable
The principal problem that only limited information on the agreement.
initial state may be available is successfully overcome by Let us consider in detail the concepts of the two ap-
perfoming multiple runs for different initial condition@ni- proaches.
crostateswith a subsequent ensemble averaging. This is the (i) Both MD and kinetic theory are based on the funda-
well-known idea of molecular-dynamics simulations thatmental equations of motion of classical or quantum mechan-
have been very successful in modeling a large variety ofcs (see above
relaxation processes in classical many-particle systems both (ii) Both approaches differ only in the treatment of these
weakly and strongly coupled. However, for quantum systemgquations: While MD works with microstates, kinetic theory
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uses ensemble-averaged quantities, such asNtparticle  Green’s functions. The introduction of initial correlations is
density operatop; . The time evolution of this averaged discussed in some detail 5] and[9]; see alsd10].
quantity is the von Neumann equation. If it is supplemented The Kadanoff-Baym equations are equations of motion
with an initial conditionp; n(t=to)=p9 ., itis fully  for special ensemble averages, the two-time correlation func-
equivalent to theN-particle Schrdinger equation: Both are tions g=, which allow for the calculation of all averages,
mechanical equations that are time reversible and consenaich as the Wigner distribution and mean potential energy
energy. (V is the volume,
(i) Thus, both approaches use ensemble averages, only
in different places: In the kinetic case, the ensemble average
is performedbeforesolving the equations of motion, while in
the case of MD, it is performedfterward on the solutions
(realization$ of the microscopic equations. 1 dp 9 9 p?
(iv) Therefore, the theories must lead to the same results ~ (V)(t)= ZWLJ —3{ (iﬁ——iﬁ—,) - —]
(27h) at ot m
for all ensemble averagd€ebservables
(v) The reduction of thé\-particle problem is, in the MD X(F1)g~(p,t,t")|i=y:- (4)
case, performed by simply taking only a small piece
Npp<$N of the system and includingll interactions while The Kadanoff-Baym equatior{4) have a number of remark-
the kinetic approach takedl particles but includes only a  able properties. They trivially include quantum effeasbi-
subset of the interactions. trary degenerady There are no consistency problems: The
structure of approximations is completely determined by the
approximation for the self-energi®s™ alone. Moreover, the
Lonservation properties of Egél) depend on simple well-

f(pvt):_iﬁg<(pvtit)a (3)

The main conclusion of point§)—(iv) is that, in fact, agree-
ment between both concepts is possible. If the relaxatio

starts from the same initial state, the two concepts must givﬁnown symmetry properties of the self-energigk Due to

theos%agﬁr;zsﬂggorrzgsc?;?bljez\t/ii;ag?izggraasllthviSéther thithis consistency, the equations yield the correct asymptotic
agreement cé\n bepachievec?also for approximations. since th tate of a correlated many-particle system. Furthermore, for
9 PP ’ e self-energies there exist powerful nonperturbative meth-

approximation sch_eme[spoint (V.)] are co_mpl_etely different. ods based on diagrammatic expansi@iswhich allow for a
Thus.we have to f_|r_1d formulations of kinetic theory ”@ systematic derivation of approximations, including strong
are given as an initial-value problem and allow for arbnrarycoupling and many-body effects. In the generalized fétim
initial correlations andb) preserve the conservation proper- the Kadanoff-Baym equations are time reversible and allow

ties of the full N-particle case(ii). Furthermore,(c) the . . : . R
theory should be straightforwardly extendable to all situa—one to include arbitrary binary correlations at a finite initial

. . . ) ; .~ timet,. Thus Eqgs(1) satisfy the above requiremen&®—(c).
tions of interest, including arbitrary values of the couplmgln this form, statistical mechanics and molecular dynamics
and the degeneracy parametErand 7.

The most general equations for the time evolution of"® equivalent12].

. Let us discuss now what kind of comparisons between the
guantum ensemble averages are generalized Kadanoff-Baytr\pv0 approaches are possible. As pointed oufii), compa-

equations rable quantities are ensemble averages. Quantities that are
sensitive to the short-time dynamics, which we are con-
. 4d ﬁ2V§ i — < HF A=, cerned with, have been found to be the kinetic and the cor-
'hE“L °m 9= (1,1 )_f dr,2""(1,1g7(1,1) relation energy6,2,11. They reflect very well the decay of

the initial correlation and the buildup of correlations due to
the interaction. Typically, at the initial stagg<t=<r.,,, the
potential energy changes until it saturates arotmd,, .

For larger times, the potential and kinetic energies each re-
main approximately constant, indicating that the kinetic re-
gime has been reached. The amount of potential-energy
change is a measure for the strength of the interaction, while
wheret, is a finite initial time and F* contains arbitrary the time scale of this change yields an estimate for the cor-

=F*(l,1’)+jttdt_1{2>(1,T)—2<(1I)}92(1_,1’)

— ft“dt_zé(lf){gdl_.l’)—g<(1_,1’)}, (1

0

initial binary correlations relation time itself and thus for the characteristic times of the
relevant relaxation mechanisms in the system. Therefore, we
F+ , will use the time evolution of kinetic energy for comparison
(1,1)
below.
- The next question is the appropriate choice of system to
= J dr{V(ry—ra)=V(r;— rz)}f dridrodradr, study and its parameters. Interestingly, the advantages of one
method overlap with the weak points of the other: Quantum
X GRAT 1ot T 1T 2tg) G F 1T 2to, T 1T 2,t0) effects, which are problematic in the MD approach, are trivi-
o ally included in the Kadanoff-Baym equations. Conversely,
X g(T 1T otg,rirot’). (2)  strong-coupling effects, which are difficult to handle in the

latter, are no problem for the former. This creates a great
Here 1=(r18§t1), V is the interaction potentialzH" the  potential for a systematic combination of both approaches
Hartree-Fock self-energy, am® M are retardedadvancell  proposed here. Advances to different approximations in one
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0 30 60 90 120 FIG. 2. Comparison of the kinetic-energy relaxation: molecular
t(fs) dynamics vs Kadanoff-Baym equations. The latter result was

) ] shifted to match the starting point of the MD curve.
FIG. 1. Potential-energy density from the Kadanoff-Baym cal-

culation. The electron density and initial kinetic-energy density are

-3 —-3. H
1'2?‘5 4a2nd GtERZ‘g ithe R'g’dberg energy and the Bohr radius greening lengthe(t) was calculated self-consistently from
areBg=4.2 meV andag =132 A. the current nonequilibrium distributiof(p,t),

field can be checked quantitatively on well-etstablished re- V(g,t)= 42'7Te2£€r K2(1) = 4_mf°cdp f(p,t). (6)
sults of the other. Deviations from one another can provide + k(1) T Jo '

valuable indications for possible inconsistencies of the un-

derlying theoretical concepts. For our calculations, we chose typical semiconductor param-

The starting point for this kind of combination has to be aeters(bulk GaAs e,=13.99 andn/m,=1.284 and took ex-
simple situation where quantitative agreement is expectedictly the same initial distribution as above. But the kinetic
We therefore consider an electron gas and neglect initial compproach contains an additional length parameter, the screen-
relations. Since the parameter ranges where both methodsg length 1, allowing one to reproduce the MD condi-
give reliable results overlap in the corner of small couplingtions using different distributionée.g., different peak posi-
and weak degeneracy, we chd$e 0.1 and%»=0.1. For the tions in units of k). Our choice was dictated by the
comparison, we use results of Zwicknagtlal. [11], who  requirement of weak degeneragy 0.1 and negligible Pauli
performed classical MD simulations for these parametersblocking effects.

They used periodic boundary conditions wilty,,=500 In Fig. 1 the Kadanoff-Baym result for the evolution of
particles. We performed Kadanoff-Baym calculations for thepotential-energy density during the initial period is given; cf.
same parameters. Eq.(4). As one can see, the potential-energy change saturates

The MD simulation used a microstate with initial coordi- after about 120 fs. One readily verifies that this time is close
nates and velocities(to),Vvi(to), which were distributed ho- to the plasma period,= y7me;, /ne?~160 fs, which is the
mogeneously in coordinate space and isotropically in moecorrelation time in this system. Due to energy conservation,
mentum space, according to the initial one-particleat the same time kinetic energy increases; see Fig. 2.
distribution f(r,v,to) = f(v,to) ~exd —64(v — 1)?]. The ini- To compare the Kadanoff-Baym calculation with the MD
tial state was uncorrelated, i.e., the initial potential energydata of Zwicknagekt al, we had to rescale our results for
was({V)(tg)=0. The initial value of the coupling parameter the kinetic energy in their unitainits ofk Ty). The results of
wasI'(=0.1, which was calculated using the initial kinetic both calculations are shown in Fig. 2. Notice that the MD
energy instead of temperaturfg= (47n/3)%?/(kT,), with  data in Ref.[11] were given for a single realization and
3/2kTy=Eyin(to)- therefore contain fluctuations around the ensemble average,

The Kadanoff-Baym equations were solved as in Rgf.  which are not present in the Kadanoff-Baym run. Neverthe-
For the weak-coupling—weak-degeneracy limit that we ardess, the agreement between both calculations is obvious.
concerned with, the self-energy has to be calculated in the In summary, we have discussed two theoretical methods
second-order Born approximation for the investigation of ultrafast relaxation phenomena: mo-

lecular dynamics and the generalized Kadanoff-Baym equa-
tions (1). Both constitute mechanical mode(seversible

3=(py,tit’) initial-value problems of the N-particle problem that con-
serve the total energy and yield the correct asymptotic state
=2ﬁ2V2f dp, f V( t) ( ) and are therefore expected to yield identical results for en-
(2wh)*) (2mh)? semble averages for identical initial dafacluding initial

= correlation$. Such quantitative agreement was demonstrated
Xg=(Petatt)g= (P~ ) g7 (Pt ). ®) for a weakly coupled, weakly degenerate electron gas by a
comparison of the evolution of kinetic energy.
For the matrix element of the interaction potentdl), we Future comparisons can also use other guantities, includ-
used the static long-wavelength limit of the screened potening two-time correlation functions, and consider larger val-
tial in the random-phase approximation, where the inverseles of the coupling and degeneracy parameters, yielding
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valuable information on the influence of strong coupling and  We are grateful to G. Zwicknagel for providing us with
guantum effects. Developments in statistical physics such akte data from Ref[11]. This work was supported by the
strong-coupling approximations for the Kadanoff-Baym Deutsche Forschungsgemeinsch&thwerpunkt “Quanten-
equations and also quantum molecular-dynamics conceptohaenz in Halbleitern” and SFB 198and by a grant for

will benefit from the proposed comparison. CPU time at the HLRZ Jich.
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