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Short-time dynamics of correlated many-particle systems: Molecular dynamics
versus quantum kinetics

M. Bonitz, D. Semkat, and D. Kremp
Fachbereich Physik, Universita¨t Rostock, Universita¨tsplatz 3, 18051 Rostock, Federal Republic of Germany

~Received 26 March 1997!

Ultrafast relaxation and correlation buildup in anN-particle system can be described theoretically using two
completely different methods: mechanical equations of motion~molecular dynamics! and quantum-statistical
models ~Kadanoff-Baym equations!. We propose to perform detailed quantitative comparisons of the two
methods to obtain a powerful and unbiased tool for testing different approximations. Results of such compari-
son are presented for a weakly coupled electron gas, which show remarkable agreement.
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PACS number~s!: 05.20.Dd, 52.25.Dg
th
a

or
d
a
bl
hi
e

n
it
f

n
l
ze
be
u
-

th
-
e
nu

da
:
th
al
nt

e
b

th
a
o

bo
m

e-
ave
-
dy
-
we

d

per-
ic

e
the

s
i-
e.
We
and
ial-
ate
of
r-
e
off-
nd
ble

p-

a-
an-

se
ry
Ultrafast relaxation phenomena, which are related to
buildup of correlations, are currently of great interest in
variety of fields, ranging from plasmas to semiconduct
and nuclear matter; see, e.g.,@1#. This has been stimulate
mainly by the development of femtosecond lasers, which
low one both to excite the nonequilibrium particle ensem
and to probe it with high accuracy. At the same time, t
created the need for precise theoretical modeling of th
phenomena.

The conventional description of relaxation processes
based upon irreversible kinetic equations of the Boltzma
type. However, these equations are not suitable for the s
ations that are of interest here because they are valid only
times longer than the correlation timetcor , they do not in-
clude initial correlations, and they conserve only kinetic e
ergy instead of total energy@2,3#. Thus, for the theoretica
description of ultrafast relaxation phenomena, generali
kinetic equations are necessary. Such equations have
extensively studied in recent years, with the help of noneq
librium Green’s functions~see, e.g.,@4,5#! and density opera
tor techniques,~e.g.@2,3#, and references therein!. However,
due to the complex form of these equations, so far only
Born approximation, i.e., the limit of small coupling param
etersG!1, whereG is the ratio of the potential and th
kinetic energy in the system, is feasible for systematic
merical studies.

On the other hand, the time evolution of a system ofN
interacting particles is completely determined by the fun
mental equations of classical or quantum mechanicsN
coupled Newton’s equations or, in the quantum case,
N-particle Schro¨dinger equation, supplemented with initi
conditions for the particle coordinates and mome
r i(t0),pi(t0), or the wave functionC1 . . .N(t0), respectively.
The principal problem that only limited information on th
initial state may be available is successfully overcome
perfoming multiple runs for different initial conditions~mi-
crostates! with a subsequent ensemble averaging. This is
well-known idea of molecular-dynamics simulations th
have been very successful in modeling a large variety
relaxation processes in classical many-particle systems
weakly and strongly coupled. However, for quantum syste
561063-651X/97/56~1!/1246~4!/$10.00
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with finite degeneracy parameterh5nL3/(2s11)>1
~where n is the density, s the spin projection, and
L5h/A2pmkBT the thermal de Broglie wavelength!, the
mechanical treatment has to be based on theN-particle
Schrödinger equation~nonrelativistic case!, which becomes
very complicated if the particle number is growing. Ther
fore, other concepts of quantum molecular dynamics h
been proposed~see, e.g.,@7#!, which are based upon an ap
proximate calculation of the wave function and alrea
achieved remarkable results~some recent results are pre
sented in@1#!. Yet these methods are only emerging and
will not discuss them here.

Due to the mentioned limitations of kinetic theory an
classical molecular dynamics~MD!, comparisons of their re-
sults are of great interest. Such comparisons have been
formed previously, but only for thermodynamic or kinet
properties. It is now well established that~reversible! me-
chanical dynamics is able to reproduce~irreversible! relax-
ation results of kinetic theory on sufficiently long tim
scales. However, no comparisons have been made of
short-time behavior (t0<t,tcor) of correlated systems. Thi
is not trivial, since one first has to clarify what kind of k
netic theory is equivalent to the MD approach in this regim
It is the purpose of our paper to answer this question.
compare the underlying concepts of both approaches
show that only kinetic equations that are defined as an init
value problem may be equivalent to MD. The best candid
for this task is found to be the quantum kinetic equations
Kadanoff and Baym@8#, which, however, have to be gene
alized to allow for arbitrary initial correlations. Finally, w
present a numerical comparison between MD and Kadan
Baym calculations for the case of a weakly coupled a
weakly degenerate electron gas, which show remarka
agreement.

Let us consider in detail the concepts of the two a
proaches.

~i! Both MD and kinetic theory are based on the fund
mental equations of motion of classical or quantum mech
ics ~see above!.

~ii ! Both approaches differ only in the treatment of the
equations: While MD works with microstates, kinetic theo
1246 © 1997 The American Physical Society



d
te

er

o
a
n

u

ce

tio
iv

th
e

ry
r-

a
ng

o
a

is

ion
nc-
s,
rgy

-

he
the

otic
for
th-

ng

low
ial

ics

the

t are
n-
or-
f
to

re-
re-
rgy
hile
or-
the
, we
n

to
one
um
vi-
ly,
e
eat
hes
one

56 1247BRIEF REPORTS
uses ensemble-averaged quantities, such as theN-particle
density operatorr1 . . .N . The time evolution of this average
quantity is the von Neumann equation. If it is supplemen
with an initial conditionr1 . . .N(t5t0)5r1 . . .N

0 , it is fully
equivalent to theN-particle Schro¨dinger equation: Both are
mechanical equations that are time reversible and cons
energy.

~iii ! Thus, both approaches use ensemble averages,
in different places: In the kinetic case, the ensemble aver
is performedbeforesolving the equations of motion, while i
the case of MD, it is performedafterward, on the solutions
~realizations! of the microscopic equations.

~iv! Therefore, the theories must lead to the same res
for all ensemble averages~observables!.

~v! The reduction of theN-particle problem is, in the MD
case, performed by simply taking only a small pie
NMD!N of the system and includingall interactions, while
the kinetic approach takesall particles but includes only a
subset of the interactions.

The main conclusion of points~i!–~iv! is that, in fact, agree-
ment between both concepts is possible. If the relaxa
starts from the same initial state, the two concepts must g
the same result for ensemble averages for all times.

Of course, the practical question arises as to whether
agreement can be achieved also for approximations, sinc
approximation schemes@point ~v!# are completely different.
Thus we have to find formulations of kinetic theory that~a!
are given as an initial-value problem and allow for arbitra
initial correlations and~b! preserve the conservation prope
ties of the full N-particle case~ii !. Furthermore,~c! the
theory should be straightforwardly extendable to all situ
tions of interest, including arbitrary values of the coupli
and the degeneracy parametersG andh.

The most general equations for the time evolution
quantum ensemble averages are generalized Kadanoff-B
equations

S i\ ]

]t
1

\2¹1
2

2m Dg:~1,18!2E d r̄ 1S
HF~1,1̄!g:~ 1̄ ,18!

5F1~1,18!1E
t0

t

d t̄ 1$S
.~1,1̄!2S,~1,1̄!%g:~ 1̄,18!

2E
t0

t8
d t̄ S:~1,1̄!$g.~ 1̄ ,18!2g,~ 1̄,18!%, ~1!

where t0 is a finite initial time andF1 contains arbitrary
initial binary correlations

F1~1,18!

5E dr2$V~r 12r 2!6V~r 182r 2!%E d r̄ 1d r̄ 2d r̃ 1d r̃ 2

3g12
R ~r 1r 2t, r̄ 1 r̄ 2t0!g12

, ~ r̄ 1 r̄ 2t0 , r̃ 1 r̃ 2 ,t0!

3g12
A ~ r̃ 1 r̃ 2t0 ,r 18r 2t8!. ~2!

Here 15(r1s3
1t1), V is the interaction potential,SHF the

Hartree-Fock self-energy, andgR (A) are retarded~advanced!
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Green’s functions. The introduction of initial correlations
discussed in some detail in@5# and @9#; see also@10#.

The Kadanoff-Baym equations are equations of mot
for special ensemble averages, the two-time correlation fu
tions g:, which allow for the calculation of all average
such as the Wigner distribution and mean potential ene
(V is the volume!,

f ~p,t !52 i\g,~p,t,t !, ~3!

^V&~ t !5
1

4
V\E dp

~2p\!3H S i\ ]

]t
2 i\

]

]t8D2
p2

mJ
3~7 i !g,~p,t,t8!u t5t8. ~4!

The Kadanoff-Baym equations~1! have a number of remark
able properties. They trivially include quantum effects~arbi-
trary degeneracy!. There are no consistency problems: T
structure of approximations is completely determined by
approximation for the self-energiesS: alone. Moreover, the
conservation properties of Eqs.~1! depend on simple well-
known symmetry properties of the self-energies@8#. Due to
this consistency, the equations yield the correct asympt
state of a correlated many-particle system. Furthermore,
the self-energies there exist powerful nonperturbative me
ods based on diagrammatic expansions@8#, which allow for a
systematic derivation of approximations, including stro
coupling and many-body effects. In the generalized form~1!,
the Kadanoff-Baym equations are time reversible and al
one to include arbitrary binary correlations at a finite init
time t0. Thus Eqs.~1! satisfy the above requirements~a!–~c!.
In this form, statistical mechanics and molecular dynam
are equivalent@12#.

Let us discuss now what kind of comparisons between
two approaches are possible. As pointed out in~iv!, compa-
rable quantities are ensemble averages. Quantities tha
sensitive to the short-time dynamics, which we are co
cerned with, have been found to be the kinetic and the c
relation energy@6,2,11#. They reflect very well the decay o
the initial correlation and the buildup of correlations due
the interaction. Typically, at the initial staget0<t<tcor , the
potential energy changes until it saturates aroundt;tcor .
For larger times, the potential and kinetic energies each
main approximately constant, indicating that the kinetic
gime has been reached. The amount of potential-ene
change is a measure for the strength of the interaction, w
the time scale of this change yields an estimate for the c
relation time itself and thus for the characteristic times of
relevant relaxation mechanisms in the system. Therefore
will use the time evolution of kinetic energy for compariso
below.

The next question is the appropriate choice of system
study and its parameters. Interestingly, the advantages of
method overlap with the weak points of the other: Quant
effects, which are problematic in the MD approach, are tri
ally included in the Kadanoff-Baym equations. Converse
strong-coupling effects, which are difficult to handle in th
latter, are no problem for the former. This creates a gr
potential for a systematic combination of both approac
proposed here. Advances to different approximations in
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1248 56BRIEF REPORTS
field can be checked quantitatively on well-etstablished
sults of the other. Deviations from one another can prov
valuable indications for possible inconsistencies of the
derlying theoretical concepts.

The starting point for this kind of combination has to be
simple situation where quantitative agreement is expec
We therefore consider an electron gas and neglect initial
relations. Since the parameter ranges where both met
give reliable results overlap in the corner of small coupli
and weak degeneracy, we choseG50.1 andh50.1. For the
comparison, we use results of Zwicknagelet al. @11#, who
performed classical MD simulations for these paramet
They used periodic boundary conditions withNMD5500
particles. We performed Kadanoff-Baym calculations for t
same parameters.

The MD simulation used a microstate with initial coord
nates and velocitiesr i(t0),vi(t0), which were distributed ho-
mogeneously in coordinate space and isotropically in m
mentum space, according to the initial one-parti
distribution f (r ,v,t0)5 f (v,t0);exp@264(v21)2#. The ini-
tial state was uncorrelated, i.e., the initial potential ene
was^V&(t0)50. The initial value of the coupling paramete
wasG050.1, which was calculated using the initial kinet
energy instead of temperatureG05(4pn/3)1/3e2/(kT0), with
3/2kT05Ekin(t0).

The Kadanoff-Baym equations were solved as in Ref.@6#.
For the weak-coupling–weak-degeneracy limit that we
concerned with, the self-energy has to be calculated in
second-order Born approximation

S:~p1 ,t,t8!

52\2V2E dp2
~2p\!3

E dq

~2p\!3
VS q\ ,t DVS q\ ,t8D

3g:~p11q,t,t8!g:~p22q,t,t8!g:~p2 ,t8,t !. ~5!

For the matrix element of the interaction potentialV(q), we
used the static long-wavelength limit of the screened po
tial in the random-phase approximation, where the inve

FIG. 1. Potential-energy density from the Kadanoff-Baym c
culation. The electron density and initial kinetic-energy density
1.228aB

23 and 64.2ERaB
23 ; the Rydberg energy and the Bohr radi

areER54.2 meV andaB5132 Å.
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screening lengthk(t) was calculated self-consistently from
the current nonequilibrium distributionf (p,t),

V~q,t !5
4pe2/e r
q21k2~ t !

, k2~ t !5
4m

p E
0

`

dp f~p,t !. ~6!

For our calculations, we chose typical semiconductor para
eters~bulk GaAs! e r513.99 andm/mr51.284 and took ex-
actly the same initial distribution as above. But the kine
approach contains an additional length parameter, the scr
ing lengthk21, allowing one to reproduce the MD cond
tions using different distributions~e.g., different peak posi-
tions in units of k). Our choice was dictated by th
requirement of weak degeneracyh50.1 and negligible Pauli
blocking effects.

In Fig. 1 the Kadanoff-Baym result for the evolution o
potential-energy density during the initial period is given;
Eq. ~4!. As one can see, the potential-energy change satur
after about 120 fs. One readily verifies that this time is clo
to the plasma periodtp5Apme r /ne

2'160 fs, which is the
correlation time in this system. Due to energy conservati
at the same time kinetic energy increases; see Fig. 2.

To compare the Kadanoff-Baym calculation with the M
data of Zwicknagelet al., we had to rescale our results fo
the kinetic energy in their units~units ofkT0). The results of
both calculations are shown in Fig. 2. Notice that the M
data in Ref.@11# were given for a single realization an
therefore contain fluctuations around the ensemble aver
which are not present in the Kadanoff-Baym run. Neverth
less, the agreement between both calculations is obviou

In summary, we have discussed two theoretical meth
for the investigation of ultrafast relaxation phenomena: m
lecular dynamics and the generalized Kadanoff-Baym eq
tions ~1!. Both constitute mechanical models~reversible
initial-value problems! of the N-particle problem that con-
serve the total energy and yield the correct asymptotic s
and are therefore expected to yield identical results for
semble averages for identical initial data~including initial
correlations!. Such quantitative agreement was demonstra
for a weakly coupled, weakly degenerate electron gas b
comparison of the evolution of kinetic energy.

Future comparisons can also use other quantities, inc
ing two-time correlation functions, and consider larger v
ues of the coupling and degeneracy parameters, yield

-
e

FIG. 2. Comparison of the kinetic-energy relaxation: molecu
dynamics vs Kadanoff-Baym equations. The latter result w
shifted to match the starting point of the MD curve.
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valuable information on the influence of strong coupling a
quantum effects. Developments in statistical physics suc
strong-coupling approximations for the Kadanoff-Bay
equations and also quantum molecular-dynamics conc
will benefit from the proposed comparison.
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